Harun Yahya

Işıktaki Tasarım 1




Yaşadığımız hayat boyunca en çok gördüğümüz gök cismi Güneş'tir. Gündüzleri ne zaman kafamızı kaldırıp göğe baksak, onun göz kamaştıran ışığı ile karşı karşıya geliriz. Bize birisi gelip de "Güneş ne işe yarar" diye sorduğunda ise, fazla düşünmeden cevap veririz: Güneş bize ısı ve ışık sağlar. Bu cevap, biraz yüzeysel de  olsa, doğrudur.

 

Ama acaba Güneş'in bize ısı ve ışık vermesi, tesadüfi ve amaçsız bir olay mıdır? Yoksa Güneş bizim için özel olarak mı tasarlanmıştır? Acaba bu gökteki ateş topu, sırf bizim ihtiyaçlarımıza uygun bir biçimde yaratılan dev bir "lamba" mıdır?

 

Son yıllardaki bilimsel bulgular, ikinci seçeneğin doğruluğunu göstermektedir. Çünkü, Güneş'in ışığında hayranlık uyandırıcı bir tasarım vardır.

 

Doğru Dalga Boyu

 

Hem ışık hem de ısı, elektromanyetik ışınım olarak bilinen enerjinin farklı şekilleridir. Elektromanyetik ışınımın tüm farklı şekilleri, uzayda enerji dalgaları şeklinde hareket ederler. Bu, bir gölün üzerine atılan taşların oluşturduğu dalgalara benzetilebilir. Ve nasıl bir göldeki dalgaların farklı boyları olabiliyorsa, elektromanyetik ışınımın da farklı dalga boyları olur. 

 

Ancak elektromanyetik ışınımın dalga boyları arasında çok büyük farklar vardır. Bazı dalga boyları kilometrelerce genişlikte olabilir. Başka dalga boyları ise, bir santimetrenin trilyonda birinden daha ufaktır. Bilimadamları, bu farklı dalga boylarını sınıflara ayırırlar. Örneğin santimetrenin trilyonda biri kadar küçük dalga boylarına sahip olan ışınlar, gama ışınları olarak bilinir. Bunlar çok yüksek enerji taşırlar. Dalga boyları kilometrelerce genişlikte olan ışınlara ise "radyo dalgaları" adını veririz ve bunlar çok zayıf bir enerjiye sahiptir. Bu nedenle gama ışınları bizim için öldürücü iken, radyo dalgalarının bize hiçbir etkisi olmaz.

 

IŞIĞIN FARKLI DALGA BOYLARI


 


Evrendeki yıldızların ve diğer ışık kaynaklarının hepsi aynı türde ışın yaymazlar. Bu farklı ışınlar, dalga boyuna göre sınıflandırılır. Farklı dalga boylarının oluşturduğu yelpaze ise çok geniştir. En küçük dalga boyuna sahip olan gama ışınları ile, en büyük dalga boyuna sahip olan radyo dalgaları arasında 1025'lik (milyar kere milyar kere milyarlık) bir fark vardır.  Konunun ilginç yanı ise, Güneş’in yaydığı ışınların tamamına yakınının, bu 1025'lik yelpazenin tek bir birimine sıkıştırılmış olmasıdır. Çünkü bu daracık alanda, yaşam için gerekli olan yegane ışınlar bulunmaktadır.



 

Burada dikkat edilmesi gereken nokta, dalga boylarının olağanüstü derecede geniş bir yelpazede dağılmış olmalarıdır. En kısa dalga boyu, en uzun dalga boyundan tam 1025 kat daha küçüktür. 1025, 1 rakamının yanına 25 tane sıfır eklenmesiyle oluşan bir sayıdır. 10, 000, 000, 000, 000, 000, 000, 000, 000 şeklinde yazabileceğimiz bu sayının büyüklüğünü daha iyi kavramak için bazı karşılaştırmalar yapmak yerinde olur. Örneğin Dünya'nın dört milyar yıllık ömrü boyunca geçen saniyelerin toplam sayısı, sadece 1017'dir. Eğer 1025 sayısını saymak istersek, gece gündüz hiç durmadan saymamız ve bu işi Dünya'nın yaşından 100 milyon kez daha uzun bir zaman boyunca sürdürmemiz gerekir! Eğer 1025 tane iskambil kağıdını üstüste dizmeye kalksak, samanyolu galaksisinin çok dışına çıkmamız ve gözlemlenebilir evrenin yaklaşık yarısı kadar bir mesafe gitmemiz icap eder.

 

Evrendeki farklı dalga boyları, işte bu kadar geniş bir yelpaze içine dağılmıştır. Ama ne ilginçtir ki, bizim Güneşimiz, bu geniş yelpazenin çok dar bir aralığına sıkıştırılmıştır. Güneş'ten yayılan farklı dalga boylarının % 70'i, 0.3 mikronla 1.50 mikron arasındaki daracık bir sınırın içindedir. Bu aralıkta üç tür ışık vardır: Görülebilir ışık, yakın kızılötesi ışınlar ve biraz da yakın morötesi ışınlar.

 

Bu üç tür ışık sayıca çok gibi durabilir. Ama gerçekte üçünün toplamı, elektromanyetik yelpazenin içinde tek bir birim yer kaplamaktadır! Bir başka deyişle, Güneş'in ışığının tümü, üstüste dizdiğimiz 1025 tane iskambil kağıdının tek bir tanesine karşılık gelmektedir.

 

Peki acaba neden Güneş'in ışınları bu daracık aralığa sıkıştırılmıştır?

 

Cevap son derece önemlidir: Güneş ışığı bu daracık aralığa sıkıştırılmıştır, çünkü Dünya üzerindeki yaşamı destekleyecek olan ışınlar, sadece bu ışınlardır.

 

İngiliz fizikçi Ian Campbell, Energy and the Atmosphere (Enerji ve Atmosfer) adlı kitabında bu konuya değinmekte ve "Güneş'ten yayılan ışınların, Dünya üzerindeki yaşamı desteklemek için gereken çok dar aralığa sıkıştırılmış olması gerçekten çok olağanüstü bir durumdur" demektedir. Campbell'e göre bu durum, "inanılmaz derecede şaşırtıcıdır".(1)

 

Şimdi ışığın bu "inanılmaz derecede şaşırtıcı" tasarımını biraz daha yakından inceleyelim.

 

Morötesinden Kızılötesine

 

Işığın 1025 farklı dalga boyunda olabileceğini belirttik. Bu dalga boylarının farklı enerji seviyeleri taşıdığına da değindik. Bu enerji seviyelerini incelediğimizde, farklı dalga boyundaki ışınların, madde ile temas ettiklerinde çok farklı etkiler meydana getirdiğini görürüz.




 

Güneş ışınlarının hemen hepsi,

0.3 mikron ile 1.50 mikron arasındaki daracık bir dalga boyu

aralığına sıkıştırılmıştır. Burada yakın morötesi ışınlar, görülebilir ışık ve kızıl ötesi ışınlar yer alır.


 

Elektromanyetik yelpazenin kısa dalga boyuna sahip ışınlarının ortak özelliği, çok yüksek enerji taşımalarıdır. Gama ışınları, X ışınları ve morötesi (ultraviyole) ışınları olarak bilinen bu ışınlar, atomlarla ya da moleküllerle karşılaştıklarında, yüksek enerjileri nedeniyle onları parçalarlar. Karşılarına çıkan maddeyi, mikro düzeyde, "delik deşik" ederler.

 

Güneş ışınlarının hemen hepsi, 0.3 mikron ile 1.50 mikron arasındaki daracık bir dalga boyu aralığına sıkıştırılmıştır. Burada yakın morötesi ışınlar, görülebilir ışık ve kızıl ötesi ışınlar yer alır.

 

Öte yandan, daha uzun dalga boyuna sahip olan ışınlar ise, ki bunlar kızılötesinden başlar ve radyo dalgalarına kadar gider, çok az enerji taşıdıkları için, madde üzerinde önemli bir etki oluşturmazlar.

 

"Madde üzerinde önemli etki" dediğimiz şey ise, kimyasal reaksiyonlardır. Bilindiği gibi kimyasal reaksiyonların önemli bir bölümü, ortama enerji girişi ile mümkün olur. Bu gerekli enerji miktarına, "aktivasyon enerjisi" denir. Bu enerji miktarından daha azı ya da fazlası işe yaramayacaktır.

 

İşte elektromanyetik yelpazenin içinde yer alan çok farklı ışınların sadece çok küçük bir kısmı, bu "aktivasyon enerjisi"ne eşit bir enerjiye sahiptir. Dalga boyları 0.70 mikron ile 0.40 mikron arasında değişen bu ışınların hangi ışınlar olduğunu anlamak isterseniz, biraz başınızı kaldırıp etrafı seyredebilirsiniz. Çünkü bu ışınlar, şu an görmekte olduğunuz "görülebilir ışık"tır. Bu ışınların etkisiyle gözünüzde kimyasal reaksiyonlar oluşmakta ve zaten bu sayede görmektesinizdir.

 

"Görülebilir ışık" olarak adlandırılan bu ışınlar, elektromanyetik yelpazenin 1025'te 1'inden bile daha az bir aralıkta olmalarına rağmen, Güneş ışınlarının toplam % 41'ini oluşturur. Tanınmış fizikçi George Wald Scientific American dergisinde yayınlanan "Life and Light" (Yaşam ve Işık) adlı ünlü bir makalesinde bu konuyu ele almış ve "biyolojik kimyanın enerji ihtiyacı ile Güneş ışınımı arasındaki olağanüstü uyum"u vurgulamıştır.(2)

 

Gerçekten de Güneş'in yaşama bu kadar uygun bir ışık yayması, olağanüstü bir tasarımdır.

 

Peki Güneş'in geriye kalan ışınları ne özelliğe sahiptir?

 

Bunu incelediğimizde, Güneş'in görülebilir ışık dışında kalan ışınlarının çok büyük bölümünün "yakın kızılötesi" dediğimiz alanda kalan ışınlar olduğunu görürüz. Yakın kızılötesi alanı, görülebilir ışığın bittiği noktada başlar ve çok daracık bir aralığı içine alır. (Yakın kızılötesi alanı, dalga boyu görülebilir ışığın bittiği 0.70 mikronda başlayan ve 1.50 mikrona kadar uzanan ışınları kapsar.)

 

Bu aralık da, yine elektromanyetik yelpazenin 1025'te 1'inden bile daha dar bir aralıktır.

 

Acaba bu yakın kızılötesi ışınları neye yarar? Bu kez bu ışınların neye yaradığını görmek için başınızı kaldırıp etrafı seyredemezsiniz, çünkü bunlar görülemeyen ışınlardır. Ama göremediğiniz bu ışınları güneşli bir yaz ya da bahar gününde kolaylıkla hissedebilirsiniz. Dışarı çıkıp yüzünüzü Güneş'e doğrultun, yüzünüzde hissedeceğiniz ısı, kızılötesi ışınların yaptıkları etkidir.

 

Kızılötesi ışınlar ısı enerjisi taşırlar ve dolayısıyla Dünya'nın ısınmasını sağlarlar. Yani onlar da, yaşam için en az görülebilir ışık kadar zorunludurlar. Ve Güneş, tam da bizim için gerekli olan bu ışınları yaymak için yaratılmıştır: Güneş ışınlarının çok büyük bir bölümü, bu iki tür ışından oluşur.

 

Peki acaba Güneş'in geriye kalan ışınları nelerdir? Ve bu ışınların bize bir yararı var mıdır?

 

Güneş'in yaydığı ışığın içinde oranı en düşük olan üçüncü grup ışınlar, "yakın morötesi" ışınlardır. Morötesi ışınlar, temelde yüksek enerji taşıyan, dolayısıyla yaşam için zararlı ışınlardır. Ancak Güneş'in yaydığı morötesi ışınlar, morötesinin en "zararsız" kısmında, yani görülebilir ışığın hemen yanıbaşında yer alan ışınlardır. Bu ışınlar ise, mutasyon ve kanser gibi zararlı etkilerine rağmen, çok önemli bir ayrıntı nedeniyle yaşam için gereklidirler. Bu daracık aralık ( 0.29 mikon ile 0.32 mikron arasında yeralan morötesi ışınların yer aldığı aralık) içindeki morötesi ışınlar, insanda ve diğer omurgalılarda, D vitamininin sentezi için gereklidirler. D vitamini vücuttaki kemiklerin oluşumu ve beslenmesi için zorunludur. Bu nedenle uzun süre Güneş ışığından uzak kalan kimselerde D vitamini eksikliği ve buna bağlı kemik hastalıkları baş gösterir

 

Kısacası Güneş'in yaydığı ışınların tümü, insan yaşamı için gerekli ışınlardır. Güneş ışınları, elektromanyetik yelpazenin içinde yer alan 1025 farklı dalga boyundan sadece tek bir aralık içine sıkıştırılmıştır ve bunlar da, ne ilginçtir ki, tam bizim ısınmamızı, görmemizi ve diğer vücut fonksiyonlarını gerçekleştirmemizi sağlayan ışınlardır.

 

Yaşam için tüm gerekli koşullar gerçekleşmiş olsa bile, yalnızca Dünya 1025'lik yelpazenin herhangi başka bir aralığındaki ışınlara maruz kalsaydı yaşam yine olamazdı. İnsanın varlığı için 1025'te bir ihtimallik bu koşulun da sağlanmış olmasının tesadüf mantığıyla açıklanması elbette mümkün değildir.

 

Bu arada bu ışınların bir başka özelliğini daha belirtmek gerekir: Bu ışınlar, aynı zamanda bizi beslemektedirler de!

 

Fotosentez ve Işık

 

Fotosentez, herkesin ortaokul ya da lise derslerinde öğrendiği kimyasal bir işlemdir. Ama çoğu insan ders kitapları arasına sıkışmış olan bu konunun bizim yaşamımız için ne kadar hayati bir önem taşıdığını farketmez.



 

Önce bu lise bilgilerini bir hatırlayalım ve fotosentezin formülüne bakalım:

 

6H2O + 6CO2 + Güneş Işığı      -->      C6H12O6 + 6O2

Glukoz

 

Bu kimyasal reaksiyonda altı su molekülü ile altı karbondioksit molekülü, Güneş ışığının enerjisi sayesinde birleşmektedir. Ortaya çıkan ve glukoz olarak adlandırdığımız molekül, yüksek enerji içeren bir yapıdır ve tüm besinlerin temel taşını oluşturur.

 

Kısacası bitkiler fotosentez yaptıklarında, Güneş'ten gelen enerjiyi kullanarak besin üretmiş olurlar. Dünya üzerindeki tek besin üretimi, bitkilerin gerçekleştirdiği bu olağanüstü kimyasal işlemdir. Diğer tüm canlılar bu kaynaktan beslenir. Otobur hayvanlar bitkileri yediklerinde bu Güneş kaynaklı enerjiyi almış olurlar. Etobur hayvanlar ise bitkileri yemiş olan otobur hayvanları yemekle, yine Güneş kaynaklı enerjiyi elde ederler. Biz insanlar da hem bitkiler hem hayvanlar aracılığıyla yine aynı enerjiyi alırız. Bu nedenle, yediğimiz her elma, patates, çikolata ya da biftek, aslında bize Güneş'ten gelen enerjiyi verir.

 

Fotosentezin çok önemli bir başka sonucu daha vardır. Üstteki formüle dikkat ederseniz, fotosentezin glukoz yanında bir de altı oksijen molekülü açığa çıkardığını görürsünüz. Bitkiler bu şekilde  hayvanlar ve insanlar tarafından sürekli "kirletilen" atmosferi temizlerler. İnsanlar ve hayvanlar, atmosferdeki oksijeni yakarak enerji elde ettikleri için, her nefes alışlarında atmosferdeki oksijen oranını biraz daha azaltırlar. Ama bu azalan oksijen, bitkiler tarafından yerine konur.

 

Kısacası, fotosentez olmasa, bitkiler olmaz, bitkiler olmadığında ise havyanlar ve biz insanlar da var olamayız. Üzerine bastığınız çimlerin, pek önemsemediğiniz ağaçların ya da salata malzemesi yaptığınız bitkilerin derinliklerinde gerçekleşen—ve henüz hiçbir laboratuvarda taklit edilemeyen—bu kimyasal reaksiyon, yaşamın temel şartlarından biridir.

 

Konunun dikkat çekici yanı ise, fotosentezin son derece iyi tasarlanmış bir işlem oluşudur. Dikkat ederseniz, bitkilerin gerçekleştirdikleri fotosentez ile, hayvanların ve insanların enerji tüketimleri arasında tam bir denge vardır. Bitkiler bize glukoz ve oksijen verirler. Biz ise hücrelerimizde glukozu oksijenle birleştirip "yakar", böylelikle bitkilerin glukoza eklemiş oldukları Güneş enerjisini açığa çıkarıp kullanırız. Yaptığımız şey, aslında fotosentezi tersine çevirmektir. Bunun sonucunda atık madde olarak karbondioksit çıkarır ve bunu ciğerlerimizle atmosfere veririz. Ama bu karbondioksit hemen bitkiler tarafından yeniden fotosentez için kullanılır. Bu mükemmel çevirim böylelikle sürer gider.

 

Şimdi bu işlemin ne kadar kusursuz bir uyumla yaratıldığını görebilmek için, işlemin içindeki faktörlerden yalnızca bir tanesinin üzerinde biraz yoğunlaşalım: Güneş ışığına.

 

Güneş ışığının Dünya üzerindeki yaşam için özel olarak tasarlandığını az önce incelemiştik. Acaba Güneş'in ışığı fotosentez için de özel olarak ayarlanmış mıdır? Yoksa bitkiler, kendilerine ne tip ışık gelirse gelsin, bu ışığı değerlendirip ona göre fotosentez yapabilecek bir esnekliğe sahip midir?

 

Bitkiler hiçbir laboratuvarın hala yapamadığı bir işlemi yüzmilyonlarca yıldır gerçekleştirirler. Güneş ışığını kullanarak “fotosentez” yapar ve besin üretirler. Ancak bu olağanüstü işlemin çok önemli bir şartı, bitkilere ulaşan ışığın fotosentez yapmaya uygun bir ışık olmasıdır.

 

Bitkiler hiçbir laboratuvarın hala yapamadığı bir işlemi yüzmilyonlarca yıldır gerçekleştirirler. Güneş ışığını kullanarak “fotosentez” yapar ve besin üretirler. Ancak bu olağanüstü işlemin çok önemli bir şartı, bitkilere ulaşan ışığın fotosentez yapmaya uygun bir ışık olmasıdır. 

 

Amerikalı astronom George Greenstein, The Symbiotic Universe (Simbiyotik Evren) adlı kitabında bu konuda şunları yazmaktadır:

 

Fotosentezi gerçekleştiren molekül, klorofildir... Fotosentez mekanizması, bir klorofil molekülünün Güneş ışığını absorbe etmesiyle başlar. Ama bunun gerçekleşebilmesi için, ışığın doğru renkte olması gerekir. Yanlış renkteki ışık, işe yaramayacaktır.

 

Bu konuda örnek olarak televizyonu verebiliriz. Bir televizyonun, bir kanalın yayınını yakalayabilmesi için, doğru frekansa ayarlanmış olması gerekir. Kanalı başka bir frekansa ayarlayın, görüntü elde edemezsiniz. Aynı şey fotosentez için de geçerlidir. Güneş'i televizyon yayını yapan istasyon olarak kabul ederseniz, klorofil molekülünü de televizyona benzetebilirsiniz. Eğer bu molekül ve Güneş birbirlerine uyumlu olarak ayarlanmış olmasalar, fotosentez oluşmaz. Ve Güneş'e baktığımızda, ışınlarının renginin tam olması gerektiği gibi olduğunu görürüz.(3)

 



Daha önce "adaptasyon yanılgısı"na dikkat çekmiş ve bazı evrimcilerin "Dünya'da şartlar farklı olsaydı, canlılar da ona uygun şekilde gelişirdi" gibi yanlış bir fikre kapılabileceklerinden söz etmiştik. Bitkiler ve fotosentez konusunu yüzeysel olarak değerlendirenler de, belki yine bu hataya düşebilir ve "Güneş ışığı daha farklı olsaydı, bitkiler de ona uygun şekilde gelişirdi" diye düşünebilirler. Oysa bu kesinlikle mümkün değildir. George Greenstein bir evrimci olmasına rağmen bu gerçeği şöyle kabul eder:

 

Belki insan burada bir tür adaptasyonun gerçekleştiğini düşünebilir: Bitkinin yaşamının Güneş ışığının özelliklerine uyum sağladığını varsayabilir. Sonuçta, eğer Güneş farklı bir ısıda olsa (ve farklı bir ışık yaysa) klorofil yerine bir başka molekül bu ışığı kullanacak biçimde gelişemez mi?

 

Açıkçası, cevap "hayır"dır. Çünkü en geniş sınırlarda dahi, tüm farklı moleküller ışığın çok belirli bazı renklerini absorbe edebilirler. Işığın absorbe edilmesi işlemi, moleküllerin içindeki elektronların yüksek enerji seviyelerine olan duyarlılıklarıyla ilgilidir ve hangi molekülü ele alırsanız alın, bu işi gerçekleştirmek için gereken enerji aynıdır. Işık, fotonlardan oluşur ve yanlış enerji seviyesinde foton, hiçbir şekilde absorbe edilemez... Kısacası yıldızların fiziği ile, moleküllerin fiziği arasında çok iyi bir uyum vardır. Bu uyum olmasa, yaşam imkansız olurdu.(4)

 

Greenstein özetle şunu söylemektedir: Herhangi bir bitkinin fotosentez yapabilmesi, sadece ve sadece çok belirli bir ışık aralığında mümkündür. Bu aralık ise tam olarak Güneş'in yaydığı ışığa karşılık gelmektedir.

 

Greenstein'in ifadesiyle "yıldızların fiziği ile moleküllerin fiziği arasındaki bu uyum", asla rastlantılarla açıklanamayacak kadar olağanüstü bir uyumdur. Güneş'in 1025'te 1 ihtimalle bizim için gerekli olan ışığı vermesi ve yeryüzünde bu ışığı kullanacak kompleks moleküllerin bulunması, elbette söz konusu uyumun bilinçli bir şekilde kurulduğunu göstermektedir.

 

Bir başka deyişle, yıldızların ışıklarına da, bitkilerin moleküllerine de hakim olan tek bir Yaratıcı, tüm bunları birbirlerine uygun olarak yaratmıştır. Allah, Kuran'da bildirildiği gibi, "kusursuzca varedendir". (Haşr Suresi, 24)

 

Dipnotlar

1Ian M. Campbell, Energy and the Atmosphere, s. 1-2

2George Wald, "Life and Light", Scientific American, 1959, vol. 201, s. 92-108

3 George Greenstein, The Symbiotic Universe, s. 96

4 George Greenstein, The Symbiotic Universe, s. 96-7

Masaüstü Görünümü